

Cooperative Transition Metal/Lewis Acid Bond-Activation Reactions by a Bidentate (Boryl)iminomethane Complex: A Significant Metal– Borane Interaction Promoted by a Small Bite-Angle LZ Chelate

Brandon R. Barnett, Curtis E. Moore, Arnold L. Rheingold, and Joshua S. Figueroa*

Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Mail Code 0358, La Jolla, California 92093-0358, United States

Supporting Information

ABSTRACT: The synthesis of a three-coordinate Ptborane complex featuring a bidentate "LZ" (boryl)iminomethane (BIM) ligand is reported. Unlike other LZ-type borane ligands featuring a single-donor buttress, the small bite angle enforced by the BIM ligand is shown to promote a significant metal-borane reverse-dative σ -interaction akin to multiply strapped metalloboratranes. The steric accessibility of the reactive Pt \rightarrow B bond fostered by the BIM ligand allows for a rich reactivity profile toward small molecules that exploit metal-borane cooperative effects. The unligated (boryl)iminomethane BIM is also synthetically accessible and functions as a Frustrated Lewis Pair (FLP). The ability of the free BIM to effect bond activation reactions is contrasted with the behavior seen in the corresponding platinum-bound complexes.

T ransition metal-borane complexes $(L_n M \rightarrow BR_3)$ featuring so-called reverse-dative σ -interactions have received increasing attention in coordination and small-molecule activation chemistry. $^{1-7}$ It is now established that coordination of a Lewis acidic borane (Z-type ligand) can significantly modulate the electronic and geometric structure properties of a transition metal center in a manner distinct from traditional Lewis basic, two-electron donor ligands (L-type ligand).^{4,8,9} Increasingly, reactivity profiles of metal-borane complexes with small molecule substrates have been uncovered that significantly diverge from those of either free boranes (BR_3) or transition metal fragments featuring only σ -donating, L-type ligands.^{5,7} These studies have led to new catalytic processes that exploit the "reverse polarity" of the metal-borane unit^{10,11} and have also demonstrated the ability of coordinated boranes to function in a hemilabile fashion to modulate the electronic structure of a metal center during multielectron transformations of small molecules.^{12–14}

Ligand design strategies that enable a significant primary interaction between a transition metal and a borane have relied on the presence of two or more L-type ligands to buttress the metal-to-borane σ -interaction (i.e., L₂Z or L₃Z).^{4–7} Traditionally, multiple donor groups have been incorporated within a borane–ligand framework to overcome the inherently low coordinative ability of free borane molecules (BR₃). Indeed, transition metal–borane complexes that lack additional donor groups and are also devoid of any secondary coordinative interactions have yet to be fully authenticated.¹⁵ In addition,

ligand frameworks possessing only a single L-type buttress have thus far shown limited ability to foster a significant metal-toborane interaction.^{16,17} This follows from the fact that boranecontaining LZ ligands most closely mimic the coordinative abilities of a free borane. However, such bidentate LZ chelates are of interest for the development of isolable metal-borane complexes that offer increased coordinative unsaturation and flexibility toward incoming ligands and substrates. Accordingly, herein we report platinum complexes featuring a (boryl)iminomethane $((R_2B)(H)C=NR; BIM)$ ligand that enables the formation of significant metal-borane interactions within a bidentate LZ chelate. We also demonstrate a rich and cooperative reaction chemistry of the Pt-to-borane linkage with a host of small-molecule substrates. The ability of the (boryl)iminomethane ligand to provide a significant metalborane interaction within a bidentate framework arises from a small bite angle between the Z-type borane and L-type N-imino coordinating groups.

The zero-valent bis(*m*-terphenyl isocyanide) platinum complex, Pt(CNAr^{Dipp2})₂ (Ar^{Dipp2} = 2,6-(2,6-(*i*-Pr)₂C₆H₃)₂-C₆H₃), is accessed via Mg-metal reduction of the dichloride, PtCl₂(CNAr^{Dipp2})₂ (mixture of *cis*- and *trans*- isomers), in a manner that parallels the synthesis of the palladium congener Pd(CNAr^{Dipp2})₂.¹⁸ Treatment of Pt(CNAr^{Dipp2})₂ with dicyclohexylborane (HBCy₂) results in the clean formation of three-coordinate Pt(κ^2 -N,B-^{Cy2}BIM)(CNAr^{Dipp2}) (1, ^{Cy2}BIM = Cy₂B-(H)C=NAr^{Dipp2}), which features a chelating LZ (boryl)iminomethane moiety, via formal 1,1-hydroboration of one CNAr^{Dipp2} ligand (Figure 1). Despite the bidentate nature of the (boryl)iminomethane ligand in Pt(κ^2 -N,B-^{Cy2}BIM)-(CNAr^{Dipp2}) (1), evidence for a significant Pt→B reversedative σ -interaction is provided by both its solid-state structure and solution spectroscopic properties.

In the solid state, complex 1 features a distorted T-shaped geometry with a Pt–B distance of 2.314(6) Å and N1–Pt–B and C2–Pt–B angles of $66.01(17)^{\circ}$ and $105.63(17)^{\circ}$, respectively. The N1–Pt–B angle in 1 is of particular note, as this small bite-angle between the rigid ^{Cy2}BIM ligand and Pt enables a short Pt–borane interaction in the absence of additional donor groups. In comparison, the related platinum *tris-*(*o*-phosphinophenylene)–borane complex, Pt[κ^4 -B,P_3-($o^{-iPr2}PC_6H_4)_3B$], features an average P–Pt–B bite angle of

 Received:
 June 10, 2014

 Published:
 July 9, 2014

Figure 1. Synthesis (top) and molecular structure (bottom) of $Pt(\kappa^2 - N_{,B}-C^{y_2}BIM)(CNAr^{Dipp_2})$ (1).

 $85.7(2)^{\circ}$ and accordingly requires a three-donor buttress to stabilize a short Pt-B interaction (2.224(2) Å).¹⁹ Near-90° bite angles are also present in the gold mono-(o-phosphinophenylene)-borane LZ chelate complexes $ClAu(\kappa^2-B,P (o^{-iPr^2}PC_6H_4)BCy_2)$ and $ClAu(\kappa^2-B_1P-(o^{-iPr^2}PC_6H_4)B(Flu))$ (Flu = fluorene),¹⁶ which have been shown by crystallographic and ¹¹B NMR spectroscopic analyses to possess significantly attenuated Au-B interactions relative to more highly buttressed borane frameworks.⁵ In contrast, 1 gives rise to a ¹¹B NMR signal at +18 ppm that is substantially upfield of the corresponding resonance of the free ^{Cy2}BIM ligand (+74 ppm; 2, Scheme 2) and strongly indicates an increase in the coordination number at boron upon ligation to the Pt center.²⁰ The presence of a significant reverse-dative σ -interaction is also indicated by NBO calculations on the model complex $Pt(\kappa^2$ -N,B-Me2BIM)(CNMe), which reveal a fully occupied bonding orbital comprised of 81% Pt character and 19% boron character.²¹ Importantly, the boron contribution in this NBO is an admixture of both 2s- and 2p₂-orbital character, thereby indicating a rehybridization of the boron center from sp² to sp³ upon interaction with Pt. This hybridization change also rationalizes the observed pyramidalization at boron in the solidstate structure of 1 ($\Sigma(\angle(C-B-C)) = 348.4^{\circ}$).

With respect to the formation of 1, it is important to note that the reaction between $Pt(CNAr^{Dipp2})_2$ and $HBCy_2$ in C_6H_6 solution is complete in ca. 30 min and no intermediates are observed by ¹H NMR spectroscopy during the course of the reaction. Furthermore, the free ^{Cy2}BIM ligand 2 is easily prepared and isolated by 1,1-hydroboration of CNAr^{Dipp2} upon the addition of HBCy₂. Free ^{Cy2}BIM (2) reacts readily with BCl₃ to form an imino-borane/bridging-chloride double Lewis acid/base adduct that has been structurally characterized (3, Scheme 2), thus demonstrating the generality of the framework to serve as an ambiphilic donor-acceptor species.²² However, free ^{Cy2}BIM (2) does not react with $Pt(CNAr^{Dipp2})_2$ in C_6D_6 solution over the course of several days, which is an observation we attribute to a slow rate of isocyanide dissociation from twocoordinate Pt(CNAr^{Dipp2})₂. FTIR and 2D EXSY ¹H NMR spectroscopic studies are consistent with this proposal and do not indicate a fast isocyanide dissociation process from

Pt(CNAr^{Dipp2})₂ that would lead to 1,1-hydroboration of free CNAr^{Dipp2} by HBCy₂, followed by combination of the newly formed ^{Cy2}BIM ligand with the zero-valent [Pt(CNAr^{Dipp2})] fragment. Instead, we presently favor a tandem sequence involving H–B bond oxidative addition to the Pt center in Pt(CNAr^{Dipp2})₂, followed by α -H migration and B–C bond reductive elimination from the putative boryl-hydride intermediate [HPt(BCy₂)(CNAr^{Dipp2})₂] to furnish complex 1.^{23,24}

The absence of a multiple-donor buttress in 1 allows it to react readily with a variety of substrates in a manner that demonstrates cooperation between the Pt and borane units in bond activation processes. For example, exposure of 1 to H₂ (1 atm) in C₆H₆ leads to the eradication of the Pt→B σ -interaction and irreversible formation of the hydride–borohydride complex, PtH(η^2 -H,B- κ^1 -N-H^{Cy2}BIM)(CNAr^{Dipp2}) (4, Scheme 1), as determined by X-ray diffraction.²⁵ The

structural parameters of the Pt–(HB) contact in complex 4 are consistent with its formulation as an η^2 -H_iB-borohydride σ complex and are corroborated by a ¹¹B NMR chemical shift of -7 ppm, which is slightly downfield of those found for fourcoordinate, sp³-hybridized hydridoborates.²⁰ Importantly, free ^{Cy2}BIM also reacts with H₂, but in a fashion distinct from Ptligated 1. Thus, treatment of ^{Cy2}BIM with H₂ affords the methylene-bridged aminoborane, Cy₂BCH₂N(H)Ar^{Dipp2} (5, Scheme 2), in an apparent H₂-activation/intramolecular imine hydrogenation sequence reminiscent of untethered imineborane Frustrated Lewis Pairs (FLPs).²⁶ Accordingly, ligation to the low-valent Pt center modulates the H₂-reativity of ^{Cy2}BIM in favor of 1,2-addition across the Pt–B interaction rather than internal hydrogenation.

Free Cy2 BIM and 1 show similarly divergent reactivity toward H₂O. Whereas Cy2 BIM reacts with H₂O to yield boronateamine 6 via H–O bond cleavage and a 1,2-cyclohexyl shift

(Scheme 2), addition of H₂O to 1 results in a formal Ptcentered H–O bond oxidative addition to afford $PtH(\mu$ - $OH)(^{Cy2}BIM)(CNAr^{Dipp2})$ (7, Scheme 1), in which a hydroxide group bridges the ^{Cy2}BIM-borane and newly formed Pt-H units. Crystallographic characterization of complex 7 (Figure 2) revealed a B-O bond distance of 1.541(3) Å, which is considerably longer than the average B-O distance of fourcoordinate, O-coordinated borates (i.e., ROBR₃; $d(B-O)_{av} =$ 1.481(±0.041) Å) contained within the Cambridge Structural Database.²⁷ This long B–O bond in 7, which undoubtedly results from coordination of the hydroxide ligand to the Lewis acidic Pt(II) center, likely lessens a buildup of charge on the boron atom and obviates the need for cyclohexyl-group migration within the Cy2BIM fragment. It is also noteworthy that well-defined H–O bond oxidative addition of H₂O to lowvalent transition metal centers is still limited to only a few examples.²⁸⁻³¹ However, it has been shown that pendant hydrogen-bond donor groups in the ligand periphery can promote H2O oxidative addition to zerovalent Group 10 metals.²⁸ Accordingly, the reaction between 1 and H₂O offers a complement to this approach, wherein O-H bond activation is facilitated by direct coordination of a Lewis acidic group to a transition metal center.

The activation of H–X bonds by the Pt→B unit in 1 can also be extended to other substrates. Addition of methanol or *p*nitroaniline to Pt(κ^2 -*N*,*B*-^{Cy2}BIM)(CNAr^{Dipp2}) (1) results in formal H–X oxidative addition and formation of the platinum– hydride complexes PtH(μ -OMe)(^{Cy2}BIM)(CNAr^{Dipp2}) (8) and PtH(μ -N(H)C₆H₄NO₂)(^{Cy2}BIM)(CNAr^{Dipp2}) (9), respectively (Scheme 1). Structural characterization of 8 and 9 revealed that the methoxide and *p*-nitroanilide ligands bridge the Pt and B centers in a manner analogous to the hydroxide ligand in 7. In contrast, the addition of phenylacetylene (HCCPh) to **1** provides the hydride complex, PtH(η^2 -C,C- κ^1 -N-PhCC-^{Cy2}BIM)(CNAr^{Dipp2}) (**10**, Scheme 1), which possesses an acetylide group σ -bound to the ^{Cy2}BIM boron center and η^2 -C,C ligated to platinum (Figure 2). Most notably, the η^2 -C,C-acetylide coordination mode found in **10** is in direct contrast to the large number of σ -bound Pt(II) acetylides reported in the literature^{32,33} and demonstrates how borane ligation to a transition metal not only facilitates substrate activation but also significantly influences the structural properties of resultant products.

Finally, cooperative bond activation by the Pt and B centers in 1 is also apparent in its reactivity toward organic carbonyl compounds. Treatment of 1 with acetone or benzaldehyde results in C=O bond reduction and formation of complexes 11 and 12, respectively, featuring oxymethyl groups that are Cbound to a formally Pt(II) center and O-bound to boron (d(C-O) = 1.429(3) Å for 11, Figure 2; d(C-O) = 1.419(2) Åfor 12). The C=O bond reductions leading to complexes 11 and 12 are accompanied by a 1,2-cyclohexyl shift, which transforms the ^{Cy2}BIM ligand into a dianionic amidoboronate. This cyclohexyl migration mirrors the reactivity of free ^{Cy2}BIM with H₂O and, likewise, reasonably occurs to compensate for an increase of charge on the borane center. In this respect, cooperative carbonyl reduction by the Pt-borane unit in 1 is reminiscent of the C=O bond insertion chemistry available to some late transition metal σ -boryl complexes.^{34,35'} Accordingly, the ^{Cy2}BIM system provides a platform to directly probe the principles differentiating the reactivity of $M \rightarrow B$ reverse-dative interactions and σ -bound boryls.³⁶ These investigations, as well as others aimed at further exploiting accessible $M \rightarrow B$ reversedative interactions fostered by the small bite-angle (boryl)iminomethane framework, are in progress.

ASSOCIATED CONTENT

S Supporting Information

Synthetic, computational and crystallographic details (PDF and CIF). This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author jsfig@ucsd.edu

Notes

The authors declare no competing financial interest.

Figure 2. Molecular structures of complexes 7, 10, and 11. The hydride ligand in 10 was not found in the electron-density difference map. Complex 11 possesses an η^1 -ipso interaction between Pt and one flanking Dipp ring in the solid state.

Journal of the American Chemical Society

ACKNOWLEDGMENTS

We are grateful to the National Science Foundation for support (CHE-0954710 and a Graduate Research Fellowship to B.R.B.) and to Prof. Carlos A. Guerrero and Matthew Del Bel for a donation of $HBCy_2$. J.S.F. is a Camille Dreyfus Teacher-Scholar (2012–2017).

REFERENCES

(1) Hill, A. F.; Owen, G. R.; White, A. J. P.; Williams, D. J. Angew. Chem., Int. Ed. 1999, 38, 2759.

(2) Braunschweig, H.; Kollann, C.; Rais, D. Angew. Chem., Int. Ed. 2006, 45, 5254.

(3) Kuzu, I.; Krummenacher, I.; Meyer, J.; Armbruster, F.; Breher, F. Dalton Trans. 2008, 5836.

(4) Amgoune, A.; Bourissou, D. Chem. Commun. 2011, 47, 859.

(5) Braunschweig, H.; Dewhurst, R. D.; Schneider, A. Chem. Rev. 2010, 110, 3924.

(6) Braunschweig, H.; Dewhurst, R. D. Dalton Trans. 2011, 40, 549.
(7) Owen, G. R. Chem. Soc. Rev. 2012, 41, 3535.

(8) Landry, V. K.; Melnick, J. G.; Buccella, D.; Pang, K.; Ulichny, J. C.; Parkin, G. Inorg. Chem. 2006, 45, 2588.

(9) Parkin, G. Organometallics 2006, 25, 4744.

(10) Harman, W. H.; Peters, J. C. J. Am. Chem. Soc. 2012, 134, 5080.

(11) Fong, H.; Moret, M.-E.; Lee, Y.; Peters, J. C. Organometallics **2013**, 32, 3053.

(12) Moret, M.-E.; Peters, J. C. Angew. Chem., Int. Ed. 2011, 50, 2063.

(13) Anderson, J. S.; Rittle, J.; Peters, J. C. Nature 2013, 501, 84.

(14) Suess, D. L. M.; Peters, J. C. J. Am. Chem. Soc. 2013, 135, 12580.
(15) Bauer, J.; Braunschweig, H.; Dewhurst, R. D.; Radacki, K. Chem.—Eur. J. 2013, 19, 8797.

(16) Bontemps, S.; Bouhadir, G.; Miqueu, K.; Bourissou, D. J. Am. Chem. Soc. 2006, 128, 12056.

(17) A related "XZ-type" boryl-borane Pt(II) complex derived from the diborane Br(Mes)B–B(Mes)Br (Mes = 2,4,6-Me₃C₆H₂) has been shown to possess a reverse-dative, Pt \rightarrow BR₃ interaction. See: Braunschweig, H.; Damme, A.; Kupfer, T. *Angew. Chem., Int. Ed.* **2011**, 50, 7179.

(18) Labios, L. A.; Millard, M. D.; Rheingold, A. L.; Figueroa, J. S. J. Am. Chem. Soc. **2009**, 131, 11318.

(19) Bontemps, S.; Bouhadir, G.; Gu, W.; Mercy, M.; Chen, C.-H.; Foxman, B. M.; Maron, L.; Ozerov, O. V.; Bourissou, D. Angew. Chem, Int. Ed. **2008**, 47, 1481.

(20) Hermanek, S. Chem. Rev. 1992, 92, 325.

(21) This orbital composition is consistent with $M \rightarrow BR_3$ reverse dative σ -interactions, wherein the empty borane p_z orbital originates from higher energy than the metal d-orbitals. Accordingly, the bonding molecular orbital is expected to be predominantly metal d-orbital in character. See: refs 8 and 9.

(22) Fontaine, F.-G.; Boudreau, J.; Thibault, M.-H. Eur. J. Inorg. Chem. 2008, 2008, 5439.

(23) For related Pt(II)-boryl complexes, see: Braunschweig, H.; Brenner, P.; Muller, A.; Radacki, K.; Rais, D.; Uttinger, K. *Chem.*—*Eur. J.* **2007**, *13*, 7171.

(24) For an early example of C–B bond reductive elimination from transiton metal boryls, see: Mannig, D.; Noth, H. *Angew. Chem., Int. Ed. Engl.* **1985**, *24*, 878.

(25) For the formation of stable and unstable hydride/borohydride species by H_2 addition to transition-metal borane complexes, see refs 10, 11, and: Tsoureas, N.; Kuo, Y.-Y.; Haddow, M. F.; Owen, G. R. *Chem. Commun.* **2011**, *47*, 484.

(26) Chase, P. A.; Jurca, T.; Stephan, D. W. Chem. Commun. 2008, 1701.

(27) Cambridge Structural Database (CSD), version 5.34 (Update 2, Feb. 2013).

(28) Grotjahn, D. B.; Gong, Y.; DiPasquale, A. G.; Zakharov, L. N.; Rheingold, A. L. *Organometallics* **2006**, *25*, 5693.

(29) Ozerov, O. V. Chem. Soc. Rev. 2008, 38, 83.

(30) Millard, M. D.; Moore, C. E.; Rheingold, A. L.; Figueroa, J. S. J. Am. Chem. Soc. 2010, 132, 8921.

(31) Klaring, P.; Pahl, S.; Braun, T.; Penner, A. Dalton Trans. 2011, 40, 6785.

(32) Castellano, F. N.; Pomestchenko, I. E.; Shikhova, E.; Hua, F.; Muro, M. L.; Rajapakse, N. *Coord. Chem. Rev.* **2006**, 250, 1819.

(33) Wang, W.; Yang, H.-B. Chem. Commun. 2014, 50, 5171.

(34) Laitar, D. S.; Müller, P.; Sadighi, J. P. J. Am. Chem. Soc. 2005, 127, 17196.

(35) Laitar, D. S.; Tsui, E. Y.; Sadighi, J. P. J. Am. Chem. Soc. 2006, 128, 11036.

(36) Irvine, G. J.; Lesley, M. J. G.; Marder, T. B.; Norman, N. C.; Rice, C. R.; Robins, E. G.; Roper, W. R.; Whittell, G. R.; Wright, L. J. *Chem. Rev.* **1998**, *98*, 2685.